Locating multiple interacting quantitative trait loci using robust model selection

نویسندگان

  • Andreas Baierl
  • Andreas Futschik
  • Malgorzata Bogdan
  • Przemyslaw Biecek
چکیده

One of the most popular criteria for model selection is the Bayesian Information Criterion (BIC). It is based on an asymptotic approximation using Bayes rule when the sample size tends to infinity and the dimension of the model is fixed. Although it works well in classical applications, it performs less satisfactorily for high dimensional problems, i.e. when the number of regressors is very large compared to the sample size. For this reason, an alternative version of the BIC has been proposed for the problem of mapping quantitative trait loci (QTLs) considered in genetics. One approach is to locate QTLs by using model selection in the context of a regression model with an extremely large number of potential regressors. Since the assumption of normally distributed errors is often unrealistic in such settings, we extend the idea underlying the modified BIC to the context of robust regression. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DISSERTATION Model Selection Techniques for Locating Multiple Quantitative Trait Loci in Experimental Crosses

Preface Statistical developments have in many cases been driven by applications in science. While genetics was always an important area that encouraged statistical research, recent technological advances in this discipline pose ever new and challenging problems to statisticians. This thesis covers the application of model selection to QTL mapping, i.e. locating genes that influence a quantitati...

متن کامل

Locating multiple interacting quantitative trait Loci using rank-based model selection.

In previous work, a modified version of the Bayesian information criterion (mBIC) was proposed to locate multiple interacting quantitative trait loci (QTL). Simulation studies and real data analysis demonstrate good properties of the mBIC in situations where the error distribution is approximately normal. However, as with other standard techniques of QTL mapping, the performance of the mBIC str...

متن کامل

Locating multiple interacting quantitative trait Loci with the zero-inflated generalized poisson regression.

We consider the problem of locating multiple interacting quantitative trait loci (QTL) influencing traits measured in counts. In many applications the distribution of the count variable has a spike at zero. Zero-inflated generalized Poisson regression (ZIGPR) allows for an additional probability mass at zero and hence an improvement in the detection of significant loci. Classical model selectio...

متن کامل

Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci.

The problem of locating multiple interacting quantitative trait loci (QTL) can be addressed as a multiple regression problem, with marker genotypes being the regressor variables. An important and difficult part in fitting such a regression model is the estimation of the QTL number and respective interactions. Among the many model selection criteria that can be used to estimate the number of reg...

متن کامل

Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy

The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007